Elastoplastic Analysis of Functionally Graded Beams under Mechanical Loads
author
Abstract:
Elastic-plastic behavior of a beam made of functionally graded material is investigated in this work. The beam is subjected to the constant axial and bending loads and the critical values of these loads for yield, collapse and elastic-plastic conditions are obtained. The variation of elastic modulus and yield strength through the height of the beam is determined with an exponential rule. The perfect plastic curve is used to model the plastic behavior of the beam. The interaction diagrams between the bending moment and axial load are obtained for both of the yield and collapse conditions. The effect of power law function on yield and collapse loads is estimated. The results are reduced to the homogeneous beam and validated with data given in the literature search.
similar resources
On Symmetric and Asymmetric Buckling Modes of Functionally Graded Annular Plates under Mechanical and Thermal Loads
In the present article, buckling analysis of functionally graded annular thin and moderately thick plates under mechanical and thermal loads is investigated. The equilibrium and stability equations of the plate are obtained based on both classical and first order shear deformation plate theories. By using an analytical method, the coupled stability equations are converted to independent equatio...
full textSize Dependent Nonlinear Bending Analysis of a Flexoelectric Functionally Graded Nano-Plate Under Thermo-Electro-Mechanical Loads
The effects of flexoelectricity on thermo-electro-mechanical behavior of a functionally graded electro-piezo-flexoelectric nano-plate are investigated in this paper using flexoelectric modified and the Kirchhoff classic theories. Moreover, using the variation method and the principle of minimum potential energy for the first time, the coupled governing nonlinear differential equations of the na...
full textFree Vibration Analysis of Functionally Graded Materials Non-uniform Beams
In this article, nonuniformity effects on free vibration analysis of functionally graded beams is discussed. variation in material properties is modeled after Powerlaw and exponential models and the non-uniformity is assumed to be exponentially varying in the width along the beams with constant thickness. Analytical solution is achieved for free vibration with simply supported conditions. It is...
full textBuckling Analysis of Rectangular Functionally Graded Plates with an Elliptic Hole Under Thermal Loads
This paper presents thermal buckling analysis of rectangular functionally graded plates (FG plates) with an eccentrically located elliptic cutout. The plate governing equations derived by the first order shear deformation theory (FSDT) and finite element formulation is developed to analyze the plate behavior subjected to a uniform temperature rise across plate thickness. It is assumed that the ...
full textFree Vibration Analysis of Functionally Graded Beams with Cracks
This study introduces the free vibration analysis of multilayered symmetric sandwich Timoshenko beams, made of functionally graded materials with two edge cracked, using the finite element method and linear elastic fracture mechanic theory. The FG beam consists of 50 layers, located symmetrically to the neutral plane, whose material properties distribution change along the beam thickness, accor...
full textNonlinear Vibration Analysis of Piezoelectric Functionally Graded Porous Timoshenko Beams
In this paper, nonlinear vibration analysis of functionally graded piezoelectric (FGP) beam with porosities material is investigated based on the Timoshenko beam theory. Material properties of FG porous beam are described according to the rule of mixture which modified to approximate material properties with porosity phases. The Ritz method is used to obtain the governing equation which is then...
full textMy Resources
Journal title
volume 13 issue 2
pages 35- 58
publication date 2012-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023